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EFFECT OF FACE-SHEET STIFFNESS ON BUCKLING OF
CURVED PLATES AND CYLINDRICAL SHELLS OF
SANDWICH CONSTRUCTION IN
AXTAT, COMPRESSION

By Robert E. Fulton
Langley Research Center

SUMMARY

A study is made of the effect of the flexural stiffness of the face sheets
on the buckling of elastic curved plates and cylindrical shells of sandwich con-
struction subjected to axial compression. The study shows that when the core is
very weak in shear, the flexural stiffness of the face sheets can have an impor-
tant effect on the buckling load. Simple formulas are developed which give good
approximations to the buckling load for most practical ranges of the parameters
where the effect of face-sheet stiffness is important. Results of these formu-
las are compared with exact results for an infinitely long curved plate over a
large range of sandwich-shell parameters. The results are based on a linear
buckling theory for sandwich shells of the Donnell type (NACA Report 479), which
takes into account the asymmetry of the sandwich faces.

INTRODUCTION

Over the past few years a number of studies have been made of the buckling
characteristics of curved plates and cylindrical shells of sandwich construc-
tion subjected to axial compression. In most of these studies the contribution
of the flexural stiffness of the face sheets to the buckling characteristics has
been neglected. Although the assumption that face-sheet contribution should be
neglected is reasonable in certain ranges of the significant parameters, it may
not be reasonable in the range where large shearing deformations occur in the
core at buckling. Buckling in this latter range of parameters results in small
axial buckle wavelengths; consequently, the faces undergo large bending deforma-
tions. The strain energy associated with this bending may be significant, and
the effects of face-sheet stiffness should be considered in determining the
buckling load of the shell.

The purpose of this paper is to investigate the contribution of the flex-
ural stiffness of the face sheets to the buckling load of a curved plate or
cylindrical shell of sandwich construction in axial compression. The investi-
gation shows that a simple expression for the buckling load including this



face-sheet contribution can be developed which holds for most practical ranges
of the parameters where the face-sheet contribution is important. The present
study is an extension of the work carried out by Stein and Mayers (ref. 1) where
the face-sheet stiffness was neglected.

SYMBOLS
a,b coordinates of edges of shell in x~ and y-directions, respectively
B extensional stiffness of face sheet, ——23—5
1-pu
c thickness of core
. Et>

D flexural stiffness of face sheet, — %y

12(1 - u8)
4 = CBlB2

Gc(Bl + BQ)
_  1°BiB,
- By + By
E Young's modulus for face sheet
¥ Airy stress function
Ge shear modulus for core
h distance between middle surfaces of face sheets
N*ag(Bl + B2)
k, buckling-load coefficient for cylinder, 5
2
n<h BlB2
*b2( By + B
ky buckling~-load coefficient for curved plate, ( 1 2)
12h?B1 Bp

m,n integers
My My sum of bending moments in face sheets
Nor critical axial stress resultant



Nx,Ny,Nw

X 3 L3
Ny , Ny , Ny

buckling increments in normal and shear stress resultants
externally applied axial stress resultant

externally applied normal and shear stress resultants

radius of curvature of shell

(Bl + BE)(Dl + Dp)

face-sheet-stiffness parameter,
2
h=B1Bo

thickness of face sheet

buckling displacements of shell in x-, y-, and z-directiomns,
respectively (fig. 1)

constant (eq. (6))

coordinates of middle surface of shell (fig. 1)

a4(Bl + Bg)e(l - u?)

curvature parameter for cylinder Za2 =
r2h®Bq By

N 2 )
o _ P (B + Bg)-(l - ul
r2h2By By

curvature parameter for plate |Zy

buckling rotation in x-direction, %(ul - ug)

buckling rotation in y-direction,

Bl

(v1 - v2)
length-width ratio, %

Poisson's ratio

coupled rotation variable, a,, + B,y

ﬂECBlB2

azGc (Bl + B2)

sandwich-core parameter for cylinder,



HECBlBg

Wb sandwich-core parameter for curved plate, >
bGe(By + Bo)
Ve two-dimensional Laplacian operator
Subscripts:
i integer 1 or 2
1,2 refer to upper and lower face sheets, respectively
X,y after commas, indicate partial differentiation with respect to

axial and circumferential coordinates, respectively

GENERAL BUCKLING EQUATIONS

Assumptions in the Sandwich Theory

The buckling equations to be solved were obtained from the nonlinear equa-
tions originally developed in references 2 and 3. The variables in the nonlin-
ear equations were separated into prebuckling and buckling effects in a manner
similar to that in reference 4. TIn the present study boundary conditions on
the prebuckling state have been relaxed so that the prebuckling displacements
are either constant or linear.

The concept of a sandwich is retained, in that the core undergoes only
transverse shear deformations so that a line through the undeformed core remains
straight when the core is deformed but does not necessarily remain perpendicular
to the neutral surface of the shell. It is assumed that the total thickness of
the shell element is small compared with the radius of curvature. The face
sheets are assumed to be elastic, isotropic, and homogeneous and to follow clas-
sical shell theory - that is, to satisfy the Kirchhoff-Love condition. The core
is assumed to be elastic, isotropic, and homogeneous, to carry no inplane loads,
and to have no deformation in the direction normal to the neutral surface of the
shell. Poisson's ratio is taken to be the same for the two face sheets and the
core; however, the thicknesses and Young's modulus may be different.

Governing Differential Equations
If the above assumptions are employed, the three differential equations

governing the buckling of a cylindrical shell of a nonsymmetrical sandwich sec-
tion (fig. 1) are as follows:

= -(Bl + Bg)(l - u2)w’xx (1a)

r



(1 - a®)e = VBw (1b)

(py + Do)V = NeWysx = 2Moyyny = Nywoyy - Llr,+ ™% =0 (1lc)
where
\
B 1°B, B
= Gy + B P R b=
® ’x ’y Gc(Bl + B25 By + Bp
_ Lfu - _ Lfys - >
a = h(ul 'U.g) h(vl Vg) (2)
Ejtyo Eity
D: = Bs = (i =1 or 2)
* 12(1—u2i * (l-p.2i )

The quantities wuj, vi, and W (wi = w) are the middle-surface incremental
buckling displacements of the ith (upper or lower) face sheet of the sandwich

in the longitudinal (x), circumferential (y), and inward radial (z) directionms,
respectively. Young's modulus for the face sheets is denoted by E4i, Polsson's
ratio by pu, and the shear meodulus of the core by Ge. The thickness of the

ith face sheet is given by ti, the thickness of the core by c, the distance
between face-sheet centers by h, and the radius of curvature of the shell by r.
The subscripts x and y after a comma indicate differentiation with respect
to the axial and circumferential coordinates, respectively. The Laplacian oper-
ator is given by Ve, and F is the Airy stress function such that the buckling
increments in the normal stress resultants Ny and Ny and in the shear stress

resultant ny are given by

.
Ny = Foxx ) (3)
Ny = Foxy

-~

The inplane forces which exist in the shell just prior tg buckling are denoted
by N3, N§ (assumed to be positive in tension), and Nyy.

The buckling behavior of the sandwich shell can be determined from a solu-
tion to equations (1) with the appropriate boundary conditions in terms of the
three unknowns, w, F, and ¢@. The usual shell theory, which includes the



effect of shearing deformations, requires that five conditions be satisfied on
the boundary. For equations (1), however, six conditions are necessary. The
extra condition results from both including the flexural stiffnesses of the face
sheets in resisting the total moment and retaining the Kirchhoff-Love assumption
for the individual faces. Thus, although in classical shell theory only one
boundary condition is required for the total moment normal to an edge, the pres-
ent study requires two separate conditions, which separate the.total moment into
a moment in the faces and a moment couple resulting from inplane forces in the
faces.

In equation (1b) the variable ¢ results from coupling, through differen-
tiation and addition, the two equations which define o .and P, the rotations
in the longitudinal and circumferential directions, respectively. (See ref. 2.)
A complete set of boundary conditions for equations (1) should therefore be
specified in terms of o« and B, not just ¢. In the present study, however,
it is convenient to use equation {1b) because the boundary conditions are such
that ¢, rather than o and f, is a natural variable.

BUCKLING OF A CURVED PLATE

Plate of Finite Length
The problem of interest is to determine the buckling load of a rectangular,

simply supported, cylindrical plate subjected to a normal compressive force N*

parallel to its directrix along the edges x = 0 and x =a (fig. 2). For
this loading condition, N = -N° and Ny, = Ny = O.

The six boundary conditions which govern buckling and which are defined
herein as simply supported are given as follows along x =0 and x = a:

(1) Displacement normal to the surface of the plate vanishes; that is,

w =20 (ha)

(2) Moment couple normal to the edge due to differential inplane forces in
the face sheets vanishes; that is,

®ry + HB:y =0 (Hb)

(3) The sum of the moment in each of the individual face sheets vanishes;
that is,

My = —(Dl + Dg)(w,xx + pw,yy> =0 (4e)



(4,5) Displacements parallel to each edge are prevented; that is,

v oLt Bve (4d)
By + Bo
B=0 (ke)

(6) Motion normal to each edge in the plane of the sheet occurs freely;
that is,

F, =0 (4£)

w=0 (5a)
Boy * Ha,, = O (5b)
My = '(Dl + Dg)(w,y.y + HW:xx) =0 (5¢)
g o Bt Boup (5d)
By + B
o =0 (5e)
Frex = O (5£)

It should be noted that equations (L4b), (4e), (5b), and (5e) imply that o
vanishes on the boundary. The quantities My and My are the sum of the

moments in the two face sheets and u and v are the neutral surface displace-
ments in the x- and y-directions, respectively.

The solution to equations (1) is

W = W

o sin 9§£ sin E%X (6)



2
F = (Bl + Bg)(l - “2)29' i sin TZX gin LY (7)

' 2 p2
Wo"g(m—e * n—2>
a b
Q= - : sin X sin nzy (8)
a
1+ x2a(m2 4 02
where W, is a constant and m and n are integers. Equations (6), (1),

and (8) satisfy explicitly all thé applicable boundary conditions (egs. (%)

and (5)) except those given by equations (L4d) and (5d). It can be seen that the
conditions given by equations (4d) and (5d) are also satisfied by noting that u
and v are related to w and F by (ref. 2)

F)y'y - MF,xx

(1 - HE)(Bl + Bg)

P My W
’ (2 - Hz)(Bl + Be) T 5 <

-2F
+ Vv, = X

- u)(Bl + Bg)

/

y

Substituting equations (6), (7), and (8) into equation (1lc) yields

(12 0 202) | (oa + %) - o)t

at r2(m2 + Kgng)g

2
N2 EE + (Dl + Dg):t11L

—Ywy, =0 (10)




The trivial solution corresponding to the unbuckled state oc¢urs for w, = O,

and the buckling load is obtained by setting the braced term equal to zero.
The equation for the buckling-load coefficient is therefore

2 5 2
s(1 + An2 o a2 1+ M2
K m® + w2 + o (11)
‘b = -
2 2 o\2 2 2.2
A 1 + An= Al Yo (1 + An
m2 m2 m2 m2
where
N
N*b%(By + Bp)
kb =
ﬁgheBlBg
4 2 2
2.2 (B + B )7 (2 - u?)
2h2B. B
r 1Bo
) (12)
ﬁ2CBlB2

o'|®
.

If the face-sheet flexural stiffnesses D; and Do are neglected as in
reference 1, equation (11) with S = 0 becomes

5 2
2 ZL. 1+ A"n2
Zb m2 m2
kb= )+ + - (13)
n 2.2 A A°n2
1+ AT IEl”’“’b(l““mz
me



Equation (13) is identical with an equation developed in reference 1 except that
the core-stiffness and curvature parameters used herein are more general and
take into account the asymmetry of the sandwich section.

It should be noted that equation (11) is quite general for all ranges of
the parameters and is applicable for both curved plates and cylinders. If the
core thickness is zero (c = 0), equation (11) reduces to a Donnell-type (ref. 5)
result for a bilayered shell. With ¢ = O and the face sheets symmetrical, it
reduces to the equation given in reference 6 for an isotropic shell.

The buckling load for a shell of finite length can be obtained by minimizing
equation (11) with respect to m and n. For an infinitely long shell the mini-
mization should be carried cut with respect to n and to the buckle-wavelength

ratio =%.

An

Plate of Infinite Length

Equation (11) has been minimized with respect to n and f% and has been

applied to an infinitely long curved plate. The results are given by the solid
lines in figure 3. It should be noted that the results for S = 0 shown in
figure 3% agree with those in reference 1 and that the results in figure 3(a) for
S = 1/5 and ¢ =0 (tl = tp = h$ agree with those for an isotropic homogeneous

curved plate given in reference 6.

Stein and Mayers (ref. 1) give the following formulas for the critical load
of an infinitely long curved plate obtained from an equation of the form of

equation (13):

Y F
Z b
(1) For R< Y

72 (1 + wb)g’

ky = + (14)

™~
n
o
+ri
0]
o1
—~ =
|...I
|
5
A
N
o’
A

2 - (15)

10



kp = = (16)

Although figure 3 shows plots of the critical load for all ranges of the
parameters, it is of interest to develop simple formulas which apply for the
more important ranges. In particular, the range where S 1is less than 0.0l is
of practical importance. TFor a symmetrical sandwich this range corresponds to
the case where t/h is less than about 1/6. As is seen from figure 3, it is
reasonable to consider equations (14) and (15) to be applicable to sandwiches
where the face-sheet thickness is small with respect to the depth of the sand-
wich. On the other hand, equation (16) is not adequate even for the range
S < 0.01; that is, the face-sheet-flexural-stiffness contribution is quite sig-
nificant even when the thickness is small.

It is well known that equation (16) is used for S = O in the parameter
range of

R\

72 Yy

and corresponds to large core shearing deformations and thereby to an infinite

wavelength ratio i%n In order to develop an equation to replace equation (16)

for a small value of 8 > O, the contribution of the face sheets to the critical

load of the plate in the range of large f% is investigated.

In the study of this contribution for the infinitely long plate, n 1is
set equal to 1 in equation (11) and the equation is rewritten in the following

form:
2 2 22
Sl+m-—2 Z-LQE l+m_
15 a2 A2
— + L —— 2

ky =
2 2
m- 2 2 2
m- m= m=
)\2 (l + )\2> ?\2 1 + qrb(l + 7\2>

(17)

11



In a similar fashion, equation (13) becomes

2
2
w2 (3
G = SN A (18)

2 2 2
1+ Z m me
L% penfg)

Tt is clear from equation (18) that as the wavelength ratio &

b
= —— approaches
a/m

infinity, equation (18) becomes equation (16). In equation (17), however, as
% becomes large the contribution of the first term and consequently the buckling

load become very large. This inconsistency for large values of % between

equations (17) and (18) reflects the effect of the flexural stiffness of the
face sheets on the critical load.

In order to determine the proper contribution of the face sheets to the

buckling of the shell, equation (17) should be minimized with respect to %.

Unfortunately, such a procedure does not yield any simple results. Attention is

2
therefore focused on the range of parameters where both (%) >> ﬁL and
b

2
(%) >> 1 so that equation (17) can be written as

Minimizing ky, with respect to % leads to

or

12



The critical buckling-load coefficient becomes therefore

2748
iy ~ o+ 2\/— (19)
B 1

For a symmetrical sandwich the critical force is

2
Gch 2

3(1 - ug) b

The usual result, which is obtained by neglecting the faces, is

1+

cr (20)

LA 1e]
ol To

2
Ge

Goh?
e

cr —

The results from equation (19) are shown in figure 3 as dashed lines when
they differ from the exact results obtained by minimizing equation (11). The
plots indicate that equation (19) is quite accurate for small values of S in
the range of interest, namely

Zp LN -V
5
k1s

Equation (19) is also seen to apply for large values of § if Zyp, 1is also large

and is in fact the asymptote for the results obtained by an exact minimization
procedure.

It is interesting to note that for a symmetrical sandwich the critical
force Nep gliven by equation (20) i1s made up of the sum of three classical
buckling forces for three different elements. These forces are -

The classical sandwich force obtained by neglecting the face-sheet

e Goh?
flexural rigidity | and
The classical buckling force for each of the two face sheets
2
considered separately 1 Eﬁ .
5(1 - u2)

When the face sheets are not alike, the result is somewhat more complicated.

15



BUCKLING OF A CYLINDER

Equation (11) can also be used to determine the critical load of a closed,

simply supported cylinder of arbitrary length. For a cylinder, however,

b=2rr and n 1is restricted to even integers. Plots similar to those in fig-
ure 3 could be prepared for the infinitely long cylinder; however, this work
was not undertaken in the present study since the trends would be similar to
those for the curved plate. The major point of practical interest is the devel-
opment, of a simple expression for cylinders which indicates the contribution of
the face sheets in the range of large values of Z5. In order to investigate

the cylinder it is convenient to rewrite equation (11) as

2
2 2
2 5\ 'Z_i_ m2(1 + 2 n2>
2 2
ka=Sm2l+7\g>+ z 5+ = (21)
m )\2n2 7\2n2
m2 |1 + 1+ ym2f{1 + 408
me a m2
or, if the face-sheet stiffness is neglected (S = 0),
2
2
7 2
28 w21 + A°n2
. ﬂLl' m2
kg = + (22)
e A°n
2 2
m21+7\n l+\|ram l+m
m
where
\
N*a?(By + Bp)
ko = —>55
7<h<Bj Bp
b 2 2
» afBj + Bg) (l - )
Za = ) (25)
r~h BlB2
n2cBlB2
Wa =
ach(Bl + Bg) )

and where S and A are the same as defined in equation (12).

1k



Equation (22) is identical with an equation originally developed in ref-
erence 1, except that the core-stiffness and curvature parameters again take
into account the asymmetry of the sandwich section. TLikewise, in reference 1
the following formulas are given for the critical load of a simply supported
cylinder obtained from an equation of the form of equation (22):

(1) For §§-§ S S
72 1+ vy,

z
g 1 ;7% (24)

(2) For =< =,
1+ Yy 2 Vg
_ Zg Zg,
K, = :é(g - \pa> (25)
Zg, 1
(5) For ;EZ E:
kg = = (26)

In order to develop a simple expression which includes the contribution of the
face sheets, it is useful to proceed as in the previous case for the curved
plate and investigate the behavior of the cylinder in the parameter range

Z
2> QL. This range corresponds to large shear deformations in the core and a

w2 Va
2 2
large wavelength ratio 2. When 2 > Y and (=) > 1, equation (21)
An An a An

becomes
z, 2
kg = Sm° + 22 _ 4 L
e Va

Minimizing this equation with respect to mZ2 results in the following expres-
sion for the critical load in the region where face-sheet flexural stiffness is

15



z
significant | 2> L|.
2 Vg

1 2Z,\8
K, ~ = o
a o 2 (27)

As might be expected, this formula is similar to equation (19), which was
obtained for the curved plate.

CONCLUDING REMARKS

A study has been made of the effect of flexural stiffness of the face
sheets on the buckling of elastic curved plates and cylindrical shells of sand-
wich construction subjected to axial compression. The results of the study for
curved plates are given in graphical form. The results agree at one extreme
with classical sandwich theory and at the other extreme with isotropic shell
theory. Any face-sheet flexural stiffness is seen to increase significantly
the buckling strength of these sandwich shells in certain ranges of the shell
parameters where the core is very weak in shear. In order to obtain any
meaningful results in these ranges, the effect of face-sheet flexural stiffness
must be included. Simple formulas have been developed in the paper for the
buckling load of curved plates and cylinders which take into account this face-
sheet contribution in the range of parameters of practical interest where the
face-sheet thickness is small.

Iangley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., January 28, 1965.
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Figure 2.~ Curved sandwich plate subjected to axial compression.
All edges are simply supported.
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Figure 3.- Buckling coefficients for simply supported, infinitely long, curved sandwich plates.
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*“The aeronantical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning is activities and the results theseof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.
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language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA-programmed scientific efforts, Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,

and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546
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